skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Xiaohua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scientific literature presents a wellspring of cutting-edge knowledge for materials science, including valuable data (e.g., numerical data from experiment results, material properties and structure). These data are critical for accelerating materials discovery by data-driven machine learning (ML) methods. The challenge is, it is impossible for humans to manually extract and retain this knowledge due to the extensive and growing volume of publications.To this end, we explore a fine-tuned BERT model for extracting knowledge. Our preliminary results show that our fine-tuned Bert model reaches an f-score of 85% for the materials named entity recognition task. The paper covers background, related work, methodology including tuning parameters, and our overall performance evaluation. Our discussion offers insights into our results, and points to directions for next steps. 
    more » « less
  2. null (Ed.)
    Purpose The output of academic literature has increased significantly due to digital technology, presenting researchers with a challenge across every discipline, including materials science, as it is impossible to manually read and extract knowledge from millions of published literature. The purpose of this study is to address this challenge by exploring knowledge extraction in materials science, as applied to digital scholarship. An overriding goal is to help inform readers about the status knowledge extraction in materials science. Design/methodology/approach The authors conducted a two-part analysis, comparing knowledge extraction methods applied materials science scholarship, across a sample of 22 articles; followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and MatScholar, a named entity recognition (NER) application. This paper covers contextual background, and a review of three tiers of knowledge extraction (ontology-based, NER and relation extraction), followed by the research goals and approach. Findings The results indicate three key needs for researchers to consider for advancing knowledge extraction: the need for materials science focused corpora; the need for researchers to define the scope of the research being pursued, and the need to understand the tradeoffs among different knowledge extraction methods. This paper also points to future material science research potential with relation extraction and increased availability of ontologies. Originality/value To the best of the authors’ knowledge, there are very few studies examining knowledge extraction in materials science. This work makes an important contribution to this underexplored research area. 
    more » « less
  3. Building a knowledge graph is a time-consuming and costly process which often applies complex natural language processing (NLP) methods for extracting knowledge graph triples from text corpora. Pre-trained large Language Models (PLM) have emerged as a crucial type of approach that provides readily available knowledge for a range of AI applications. However, it is unclear whether it is feasible to construct domain-specific knowledge graphs from PLMs. Motivated by the capacity of knowledge graphs to accelerate data-driven materials discovery, we explored a set of state-of-the-art pre-trained general-purpose and domain-specific language models to extract knowledge triples for metal-organic frameworks (MOFs). We created a knowledge graph benchmark with 7 relations for 1248 published MOF synonyms. Our experimental results showed that domain-specific PLMs consistently outperformed the general-purpose PLMs for predicting MOF related triples. The overall benchmarking results, however, show that using the present PLMs to create domain-specific knowledge graphs is still far from being practical, motivating the need to develop more capable and knowledgeable pre-trained language models for particular applications in materials science. 
    more » « less
  4. In this position paper, we describe research on knowledge graph-empowered materials science prediction and discovery. The research consists of several key components including ontology mapping, materials data annotation, and information extraction from unstructured scholarly articles. We argue that although big data generated by simulations and experiments have motivated and accelerated the data-driven science, the distribution and heterogeneity of materials science-related big data hinders major advancements in the field. Knowledge graphs, as semantic hubs, integrate disparate data and provide a feasible solution to addressing this challenge. We design a knowledge-graph based approach for data discovery, extraction, and integration in materials science. 
    more » « less
  5. Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development. 
    more » « less